OUR MISSION

Connecting you with our food system and its value in our daily lives — from dirt to dinner.

7 Things to Know about Indoor Farming

Soil and Crop Management

7 Things to Know about Indoor Farming

The Dirt

There have been some big headlines lately regarding vertical farming. The news calls it “The Future of Farming,” while others are proclaiming it is “Definitely NOT Organic.” What is vertical farming, and what do we need to know about it?


On the run? LISTEN to our post!

I walk into my local grocery store, grab one of the wet wipes to sanitize my cart, and head to the produce section. I pick up some strawberries and raspberries for my smoothies; celery and carrots for my afternoon snacks; and some butter lettuce…but wait, where is the kale?

It takes me a moment to scan the area, wondering where they could have moved it, and then I see it: a glowing, light-filled series of shelves filled with greenery interspersed with dill and parsley and all kinds of other herbs – and they all appear to have their roots still intact.

As I take a closer look, I read the signs: 

“We believe your herbs should not have to travel more than you have” and “By keeping the roots on, we keep all the flavor and goodness” and “We’re growing herbs in-store using 95% less water.”

I pause for a moment, considering the other items already in my cart…

My carrots, celery, and butter lettuce don’t have the roots on them, and they have had to travel across many states to get in my cart.

Does that make them less nutritious? Or worse for the environment? Or less flavorful?

Infarm, the company behind the installation in the grocery store, combined indoor farming with the “internet of things” technologies — to create a controlled ecosystem with an optimal amount of light, air, and nutrients. While considered a vertical farm, this type of farm falls within the larger umbrella of a group of farming techniques called Controlled Environment Ag (CEA). This includes greenhouses, indoor farms, and vertical farms that apply a combination of engineering, plant science, and computer-managed technologies to optimize growing systems.

As it turns out, there is a lot to know about this field of farming…

1. You can grow almost anything using Controlled Environment Ag

Did you know that 90% of our U.S. retail grocery tomatoes are grown indoors? There are more tomatoes grown indoors than flowers! There’s been a remarkable shift from just 20 years ago when that number was closer to 5-10%. Indoor agriculture employs a series of hydroponic technologies to grow almost anything.

When I spoke with Joe Swartz, Vice President at American Hydroponics, he explained that:

“CEA can grow just about anything, the technology is there. You can grow a banana tree if you’d like, but you must look at it as a matter of economics. Leafy greens and produce like tomatoes are more prominent not because that is the only thing you can grow but because it allows you to maximize space. These are also crops that can be sold at a market premium, that consumers will pay more for, for higher quality — such as tomatoes.”

Leafy greens, however, are the real growth driver here. About 90% of our leafy greens are still grown in fields, but over the next few years, market trends suggest that we will see that number shift to CEA.

More than 21 million pounds of lettuce is consumed in the U.S. every day, and while the amount of lettuce we consume has not changed significantly in recent years, where it’s coming from will. This is said to be the most significant opportunity in the indoor growing space. As of 2020, that translates to about 74 acres of operational vertical farmland in the world. About 41,000 indoor farms exist in the U.S. alone, from large to small operations.

2. The location of greenhouses and indoor growing facilities is critical

Gotham Greens is a well-known greenhouse situated on a rooftop in Brooklyn. I never stopped to consider that the location was anything but an available space with sunlight. The truth is, a ton of strategic planning goes into indoor farming location selection. The key considerations are how best to use waste energy. Heat, wind, air conditioning, electricity — these are all vital components of any indoor farming operation.

Neal Parikh, former VP of Capital Markets and Corporate Development at BrightFarms Inc. and current Managing Member at Lattice Impact Partners, explained that tapping into alternative energies is paramount to cost savings and sustainable efforts.

For example, greenhouse farms like Gotham Greens can harness rainwater from rooftops to reuse for irrigation. CEA locations near landfills can make use of the waste methane – these types of locations are considered co-generation facilities, in other words, facilities nearby that generate an energy source that the indoor farm needs. Locations near factories can take advantage of the waste heat or CO2 that they need to farm. This carbon capture or carbon sequestration from neighboring businesses saves time, money, and energy while reducing labor.

Another consideration, as the Infarm ads I saw in the grocery store suggest, is that farmers want their production location to be as close to their distributors (or grocery stores) as possible, to cut down on complications caused by traveling long distances. As both Neal and Joe pointed out, certain crops must travel long distances to be affordable, but there is an opportunity in indoor farming to bring producers closer to the end customer. To feed a growing population, we must include all kinds of farming as options for consumers.

3. Food safety is a top priority

As we’ve all seen in the news from time to time, leafy greens are the most vulnerable to food safety issues. The latest E. coli outbreaks in romaine lettuce have still left some worry in our minds. This is because leafy greens are produced and processed in such mass quantities that it is often hard to trace an outbreak. In CEA, E. coli, for example, can be traced back to one batch of romaine to isolate the incident quickly and accurately. Additionally, indoor farming allows for variables like animal waste contamination to be controlled and eliminated.

Between Yuma, Arizona and the Salinas Valley in California, these areas produce over 98% of the lettuce grown in the U.S. What greenhouses and indoor farms can provide, and all CEA for that matter, is a detailed tracing and inventory system, which makes pinpointing a specific batch more manageable than any other method of farming.

The CEA industry also upholds a rigorous standard for food safety, regulated by the CEA Food Safety Coalition. One of the first standards they formalized was standards for leafy greens.

4. Helping with climate change and population growth

CEA addresses many of the same environmental impacts that conventional or organic farming is addressing—but takes it one step further. We know the population is growing and estimates say we will reach upwards of 10 billion by 2050. This type of growth causes an imbalance in food demand and supply. Indoor farmers believe (and we agree!) that we need to embrace all kinds of farming methods and technologies to feed our growing world.

Controlling climate variables is much easier indoors than outdoors. With the technology of indoor agriculture, farmers can customize the temperatures, light exposures, CO2 intake, and more, for each plant they grow. As discussed earlier, conserving natural resources and upcycling waste heat is another chief benefit of CEA.

5. There are many challenges associated with CEA

CEA is a double-edged sword. One of the biggest hurdles, and debatably the reason why the indoor ag space is not more prominent, is that the initial investments in space and technology are immense.

Global Indoor Farming Technology Market Trends

As Joe Swartz alluded to earlier, profitability is a concern when it comes to crop selection and what to grow. There must be enough demand for the crop that a consumer will pay a higher price for a plant grown with controlled inputs.

In addition to the steep initial investments, operating costs are also astronomical. Producing sunlight, oxygen, air conditioning, and water filtration systems are no small line items. These challenges not only make it arduous to start a CEA, but hinder profitability in the short term – and if not run efficiently – in the long term.

The consumer-facing debate is that CEA is not considered organic because it is not grown in soil, therefore they cannot label as such. Supporters of indoor organics say that organic food is more about pesticide use (or lack thereof) than being grown from soil. This debate continues, making it difficult to land on an enticing marketing strategy for foods grown indoors. (We say conventional, organic, or CEA – each option is nutritious and should be available for the consumer to choose from!)

6. There is no magic to indoor ag; it takes hard work, just like traditional farming

Just like row cropping, indoor ag requires the same inputs—air, nutrients, sunlight, CO2, water. Furthermore, the technical acumen required for these operations is steep. The difference is that these inputs are produced inside, artificially, rather than naturally.

This requires specialized machinery, multi-faceted hydroponic technologies, and smart picking and packing systems. The development and implementation of hardware and software can be likened to the occupational knowledge of farming equipment in the field. Labor is also needed, as it is with organic or conventional farming.

While the methods are different, the result is the same: safe, good-for-you foods.

7. Vertical farming is not a new concept 

Vertical farming—a thing of the future! Well, not exactly. Automated greenhouses actually started popping up in the 1980s. Millions of dollars were invested in large greenhouses in New York, Pennsylvania, and Virginia. The technology was sold to the consumer as “by the 1990s, all of your food will be grown in a greenhouse mega farm!” Well, that never happened.

Robotic greenhouses and lettuce factories sprouted up thanks to a significant generation of public interest, which led to a fair degree of investment. Unfortunately, the technologies failed miserably. They were not market-ready, affordable products. This lack of demand led to closures. It took over 20 years to regain both consumer trust and substantial enough investments in the industry.

The good news is that technologies now exist to make vertical farming not only possible but economical.

The Bottom Line

I put the kale grown in the nearby greenhouse in my basket. I am confident that it is safe to eat, grown locally, and nutritious. While controlled environment ag won’t supplant traditional production, it will create an alternative production method that will become a part of the overall growth model. Technique and technology are really about choice—giving farmers and consumers another option on how they produce and source their greens and veggies. Each end of the chain will make that choice on the basis of rational (economic) and emotive (values) factors. This is a good thing — but at present, it is far from a replacement for what now exists. It’s another arrow in the quiver of modern ag production.

D2D-illustration Bottom Line